Effusive molecular beam study of C2H6 dissociation on Pt(111).
نویسندگان
چکیده
The dissociative sticking coefficient for C2H6 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. A microcanonical unimolecular rate theory (MURT) model of the reactive system is used to extract transition state properties from the data as well as to compare our data directly with supersonic molecular beam and thermal equilibrium sticking measurements. We report for the first time the threshold energy for dissociation, E0 = 26.5 +/- 3 kJ mol(-1). This value is only weakly dependent on the other two parameters of the model. A strong surface temperature dependence in the initial sticking coefficient is observed; however, the relatively weak dependence on gas temperature indicates some combination of the following (i) not all molecular excitations are contributing equally to the enhancement of sticking, (ii) that strong entropic effects in the dissociative transition state are leading to unusually high vibrational frequencies in the transition state, and (iii) energy transfer from gas-phase rovibrational modes to the surface is surprisingly efficient. In other words, it appears that vibrational mode-specific behavior and/or molecular rotations may play stronger roles in the dissociative adsorption of C2H6 than they do for CH4. The MURT with an optimized parameter set provides for a predictive understanding of the kinetics of this C-H bond activation reaction, that is, it allows us to predict the dissociative sticking coefficient of C2H6 on Pt(111) for any combination of Ts and Tg even if the two are not equal to one another.
منابع مشابه
Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111).
The dissociative sticking coefficient for CH4 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. The experimental results are used to optimize the three parameters of a microcanonical unimolecular rate theory (MURT) model of the reactive system. The MURT calculations ...
متن کاملQuantum state resolved molecular beam reflectivity measurements: CH4 dissociation on Pt(111).
The King and Wells molecular beam reflectivity method has been used for a quantum state resolved study of the dissociative chemisorption of CH4 on Pt(111) at several surface temperatures. Initial sticking coefficients S0 were measured for incident CH4 prepared both with a single quantum of ν3 antisymmetric stretch vibration by infrared laser pumping and without laser excitation. Vibrational exc...
متن کاملThe Negligible Role of C−H Stretch Excitation in the Physisorption of CH4 on Pt(111)
We report a molecular beam study of the effect of vibrational excitation on the physisorption of methane on a Pt(111) surface. Our experiments use a continuous molecular beam of CH4, prepared in its antisymmetic C−H stretch mode ν3 by infrared laser pumping via rapid adiabatic passage. Physisorbed CH4(ads) is detected on a Pt(111) surface by reflection absorption infrared spectroscopy. At a sur...
متن کاملAtomic and molecular hydrogen interacting with Pt„111..
This computational study is motivated by the apparent conflict between an experiment on dissociation of H2 and D2 on Pt~111!, which suggests a rather corrugated potential energy surface ~PES! for the H2/Pt~111! system, and an experiment showing only weak nonzero-order diffraction of HD scattering from Pt~111!. In the calculations we have used density functional theory ~DFT! within the generaliz...
متن کاملBond-Selective and Mode-Specific Dissociation of CH3D and CH2D2 on Pt(111).
Infrared laser excitation of partially deuterated methanes (CH3D and CH2D2) in a molecular beam is used to control their dissociative chemisorption on a Pt(111) single crystal and to determine the quantum state-resolved dissociation probabilities. The exclusive detection of C-H cleavage products adsorbed on the Pt(111) surface by infrared absorption reflection spectroscopy indicates strong bond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 13 شماره
صفحات -
تاریخ انتشار 2006